Difference between revisions of "Intermediate C++ Game Programming Tutorial 24"
From Chilipedia
(→Video Timestamp Index) |
(→Tutorial 24.2: The unordered associative containers) |
||
(17 intermediate revisions by the same user not shown) | |||
Line 19: | Line 19: | ||
== Video Timestamp Index == | == Video Timestamp Index == | ||
− | [https://youtu.be/JlPsCoCO99o Tutorial 24.1]: The ordered associative containers | + | === [https://youtu.be/JlPsCoCO99o Tutorial 24.1]: The ordered associative containers === |
<div class="mw-collapsible mw-collapsed"><br /> | <div class="mw-collapsible mw-collapsed"><br /> | ||
* The <code>std::map<KeyType,ValueType></code> class [https://youtu.be/JlPsCoCO99o?t=0m46s 0:46] | * The <code>std::map<KeyType,ValueType></code> class [https://youtu.be/JlPsCoCO99o?t=0m46s 0:46] | ||
Line 95: | Line 95: | ||
</div> | </div> | ||
</div> | </div> | ||
− | [https://youtu.be/LsjFAx-dG5I Tutorial 24.2]: The unordered associative containers | + | === [https://youtu.be/LsjFAx-dG5I Tutorial 24.2]: The unordered associative containers === |
− | * Main difference between ordered/unordered | + | <div class="mw-collapsible mw-collapsed"><br /> |
− | + | * Main difference between ordered/unordered: performance [https://youtu.be/LsjFAx-dG5I?t=0m14s 0:14] | |
− | + | <div class="mw-collapsible-content"> | |
+ | :* Implication: if you iterative over an unordered container, keys will appear in (seemingly) random order | ||
+ | :* Releasing the ordering requirement makes it possible to use a hash table with performance advantages: O(1) contant time insertion and lookup | ||
+ | </div> | ||
* Using an unordered map [https://youtu.be/LsjFAx-dG5I?t=1m38s 1:38] | * Using an unordered map [https://youtu.be/LsjFAx-dG5I?t=1m38s 1:38] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* The interface is pretty much the same as its ordered counterpart | |
− | + | :* Include <code><unordered_map></code>, declare using <code>std::unordered_map<KeyType,ValueType></code> | |
+ | :* You can initialize your map object with an initializer list if you wanted to using <code>({ {..,..},{..,..},... })</code> inside your declaration | ||
+ | </div> | ||
* The Hash Table data structure [https://youtu.be/LsjFAx-dG5I?t=3m20s 3:20] | * The Hash Table data structure [https://youtu.be/LsjFAx-dG5I?t=3m20s 3:20] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* A hash table allows you to get the quick access to values, comparable to array access using the index, but with efficient memory usage | |
− | + | :* Buckets are used to group keys; this is done by mapping keys to buckets using a hash function (a.k.a. hashing) | |
− | + | :* Multiple keys can map to the same bucket in a hash table ("collision"). We use a linked list to store multiple {key,value} pairs in a bucket | |
− | + | :* Two ways to minimize hash collisions: i) more buckets, ii) smart hash function that distributes key values uniformly across your bucket space | |
− | + | :* Hashing a a two step process [https://youtu.be/LsjFAx-dG5I?t=9m26s 9:26]: | |
− | + | ::- A hash function takes in the KeyType input (typically a string or int) and outputs a size_t | |
− | + | ::- the size_t output is reduced/ditributed to the size of the hash table (number of buckets) | |
− | + | :* The Standard Library provides general hashing functions for all the standard types | |
+ | :* For general use of unordered maps, we don't have to worry about the technical details of how the hash table works, the STL provides this | ||
+ | </div> | ||
* Requirements for the KeyType of an <code>unordered_map</code> / a hash table [https://youtu.be/LsjFAx-dG5I?t=11m56s 11:56] | * Requirements for the KeyType of an <code>unordered_map</code> / a hash table [https://youtu.be/LsjFAx-dG5I?t=11m56s 11:56] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* There needs to be a working hash function defined for the KeyType | |
+ | :* There need to be comparison and equality functor definitions for the KeyType | ||
+ | </div> | ||
* Example: map from <code>Vec2</code> class (2D coordinates) to a string [https://youtu.be/LsjFAx-dG5I?t=12m46s 12:46] | * Example: map from <code>Vec2</code> class (2D coordinates) to a string [https://youtu.be/LsjFAx-dG5I?t=12m46s 12:46] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* In order to make this work, you need to define a hash function and the comparators for <code>Vei2</code> | |
− | + | :* You can implement a comparison/equality functor as a <code>struct</code> that defines a <code>operator()</code> member function, templated on <code>T</code> | |
− | + | ::<syntaxhighlight lang="cpp" line> | |
+ | struct EqVec2 | ||
+ | { | ||
+ | template <typename T> | ||
+ | bool operator()( const T& lhs,const T& rhs ) const | ||
+ | { | ||
+ | return (lhs.x == rhs.x) && (lhs.y == rhs.y); | ||
+ | } | ||
+ | }; | ||
+ | </syntaxhighlight> | ||
+ | :* Defining a custom hashing function is an art, it requires knowledge of cryptography, abstract algebra, discrete math, etc. | ||
+ | :* Luckily, we don't need this; you can revert to the standard hashing functions for the basic types that make up any custom type | ||
+ | </div> | ||
* Hash combining [https://youtu.be/LsjFAx-dG5I?t=14m25s 14:25] | * Hash combining [https://youtu.be/LsjFAx-dG5I?t=14m25s 14:25] | ||
− | + | <div class="mw-collapsible-content"> | |
− | * | + | :* Combining hashes from basic types to create a hash over your custom object |
− | + | :* A simple google search will give you good examples of how to combine hash values in C++ | |
− | + | :* You can implement a hashing functor as a <code>struct</code> that defines a member function, templated on <code>T</code>, the basic type of the <code>Vec2</code> coordinates: | |
− | + | ::<syntaxhighlight lang="cpp" line> | |
− | + | struct HashVec2 | |
− | + | { | |
− | + | template <typename T> | |
− | + | size_t operator()( const _Vec2<T>& vec ) const | |
− | + | { | |
− | + | std::hash<T> hasher; | |
− | + | auto hashx = hasher ( vec.x ); | |
− | + | auto hashy = hasher ( vec.y ); | |
+ | hashx ^= hashy + 0x9e3779b9 + (hashx << 6) + (hashx >> 2); | ||
+ | return hashx; | ||
+ | } | ||
+ | }; | ||
+ | </syntaxhighlight> | ||
+ | :* You pass this functors when defining the map: <code>std::unordered_map<Vei2,std::string,HashVec2> map;</code> [https://youtu.be/LsjFAx-dG5I?t=17m15s 17:15]. | ||
+ | :* Note that the comparison functor is not needed: we can revert back to the equality operator already defined in the <code>Vec2</code> class definition | ||
+ | </div> | ||
* Template Specialization [https://youtu.be/LsjFAx-dG5I?t=18m43s 18:43] | * Template Specialization [https://youtu.be/LsjFAx-dG5I?t=18m43s 18:43] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* Unordered map uses <code>std::hash</code> by default. You can inject Template Specialization for <code>std::hash</code> into the <code>std</code> Namespace for your own custom types only | |
− | + | ::<syntaxhighlight lang="cpp" line> | |
− | + | namespace std | |
− | + | { | |
− | + | template <> struct hash<Vei2> | |
− | + | { | |
− | + | size_t operator()( cont Vei2& vec ) const | |
− | + | {...} | |
− | + | }; | |
+ | } | ||
+ | </syntaxhighlight> | ||
+ | :* Now you don't need to pass <code>HashVec2</code> in the map definition | ||
+ | </div> | ||
* The <code>std::unordered_map<></code> Bucket interface [https://youtu.be/LsjFAx-dG5I?t=20m00s 20:00] | * The <code>std::unordered_map<></code> Bucket interface [https://youtu.be/LsjFAx-dG5I?t=20m00s 20:00] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* Allows you to get information about the buckets in the hash table and access nodes | |
+ | :* The bucket iterator takes an index of the bucket and allows you to iterate over all the elements in that specific bucket | ||
+ | </div> | ||
* The <code>std::unordered_map<></code> Hash policy interface [https://youtu.be/LsjFAx-dG5I?t=21m47s 21:47] | * The <code>std::unordered_map<></code> Hash policy interface [https://youtu.be/LsjFAx-dG5I?t=21m47s 21:47] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* Allows you to tune your hash table (and thus the growth behavior & performance of the map) | |
− | + | :* Load Factor = average number of elements per bucket. For performance, you typically want to keep this below 1 | |
− | + | :* You can set the maximum load factor above which the table gets rehashed | |
− | + | :* When the load factor becomes too high, it will automaticall rehash the table and increase the number of buckets | |
− | + | :* You can manually rehash to a number of buckets you define | |
+ | :* You can reserve space for max number of elements, is then derives (and manages) the required number of buckets | ||
+ | </div> | ||
* When to choose <code>std::map</code> over <code>std::unordered_map</code>? [https://youtu.be/LsjFAx-dG5I?t=24m15s 25:15] | * When to choose <code>std::map</code> over <code>std::unordered_map</code>? [https://youtu.be/LsjFAx-dG5I?t=24m15s 25:15] | ||
− | + | <div class="mw-collapsible-content"> | |
− | + | :* For simplicity and when performance is not a critical issue, no need to define a hash function; | |
− | + | :* If you want to iterate in order; | |
+ | :* When you want to be able to find keys that are close to a certain key (with <code>lower_bound</code> and <code>upper_bount</code> | ||
+ | </div> | ||
* Homework assignment [https://youtu.be/LsjFAx-dG5I?t=26m04s 26:04] | * Homework assignment [https://youtu.be/LsjFAx-dG5I?t=26m04s 26:04] | ||
+ | </div> | ||
== Homework Assignment == | == Homework Assignment == |
Latest revision as of 23:47, 2 February 2020
Associative containers are super useful, both as a convenient fast way to create dictionary or mapping for real-world problems like managing game resources, and as a data structure to help solve more abstract algorithmic computer science problems. And hash tables are fast as balls.
Contents
[hide]Topics Covered
Part 1: ordered associative containers
-
std::map
container interface - Binary tree data structure
-
std::map
key requirements (comparison) -
std::map
gotchas (std::remove_if
andconst
keys) -
std::set
-
std::multimap
andstd::multiset
Part 2: unordered associative containers
- Hash table performance vs. binary tree performance
- Hash table data structure
-
std::unordered_map
key requirements - Hash combining
-
std::unordered_map
bucket interface and hashing policy - When to choose
std::map
overstd::unordered_map
Video Timestamp Index
Tutorial 24.1: The ordered associative containers
[Expand]
- The
std::map<KeyType,ValueType>
class 0:46
- A Binary Tree data structure is used to manage the order of map elements 2:46
- A look at the
std::map
cppreference.com documentation: insert, lookup & find 7:35
- Requirements on KeyType 14:30
-
std::map
cppreference.com documentation continued: erase 15:28
- Two important things to know when working with associative containers 16:04
- The
std::set<KeyType>
class 20:00
- The
std::multimap
andstd::multiset
classes 21:28
- Practical example of a multimap use case 22:30
- Lookup in multimaps 25:21
Tutorial 24.2: The unordered associative containers
[Expand]
- Main difference between ordered/unordered: performance 0:14
- Using an unordered map 1:38
- The Hash Table data structure 3:20
- Requirements for the KeyType of an
unordered_map
/ a hash table 11:56
- Example: map from
Vec2
class (2D coordinates) to a string 12:46
- Hash combining 14:25
- Template Specialization 18:43
- The
std::unordered_map<>
Bucket interface 20:00
- The
std::unordered_map<>
Hash policy interface 21:47
- When to choose
std::map
overstd::unordered_map
? 25:15
- Homework assignment 26:04
Homework Assignment
The homework for this video is to enable use of a custom datatype in unordered_map
hashing over multiple (4) members of that datatype. The solution video is here.